Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.580
Filtrar
1.
Blood Cancer J ; 14(1): 66, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622139

RESUMO

CAR T-cell therapy has transformed relapsed/refractory (r/r) B-cell precursor acute lymphoblastic leukaemia (B-ALL) management and outcomes, but following CAR T infusion, interventions are often needed. In a UK multicentre study, we retrospectively evaluated tisagenlecleucel outcomes in all eligible patients, analysing overall survival (OS) and event-free survival (EFS) with standard and stringent definitions, the latter including measurable residual disease (MRD) emergence and further anti-leukaemic therapy. Both intention-to-treat and infused cohorts were considered. We collected data on feasibility of delivery, manufacture, toxicity, cause of therapy failure and followed patients until death from any cause. Of 142 eligible patients, 125 received tisagenlecleucel, 115/125 (92%) achieved complete remission (CR/CRi). Severe cytokine release syndrome and neurotoxicity occurred in 16/123 (13%) and 10/123 (8.1%), procedural mortality was 3/126 (2.4%). The 2-year intent to treat OS and EFS were 65.2% (95%CI 57.2-74.2%) and 46.5% (95%CI 37.6-57.6%), 2-year intent to treat stringent EFS was 35.6% (95%CI 28.1-44.9%). Median OS was not reached. Sixty-two responding patients experienced CAR T failure by the stringent event definition. Post failure, 1-year OS and standard EFS were 61.2% (95%CI 49.3-75.8) and 55.3% (95%CI 43.6-70.2). Investigation of CAR T-cell therapy for B-ALL delivered on a country-wide basis, including following patients beyond therapy failure, provides clinicians with robust outcome measures. Previously, outcomes post CAR T-cell therapy failure were under-reported. Our data show that patients can be successfully salvaged in this context with good short-term survival.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Criança , Humanos , Adolescente , Análise de Intenção de Tratamento , Estudos Retrospectivos , Receptores de Antígenos de Linfócitos T , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Imunoterapia Adotiva/efeitos adversos , Antígenos CD19
2.
Cancer Immunol Immunother ; 73(6): 104, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630258

RESUMO

Few studies have reported the associations of granulocyte colony-stimulating factor (G-CSF) with cytokine release syndrome (CRS), neurotoxic events (NEs) and efficacy after chimeric antigen receptor (CAR) T-cell therapy for relapsed or refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL). We present a retrospective study of 67 patients with R/R B-ALL who received anti-CD19 CAR T-cell therapy, 41 (61.2%) patients received G-CSF (G-CSF group), while 26 (38.8%) did not (non-G-CSF group). Patients had similar duration of grade 3-4 neutropenia between the two groups. The incidences of CRS and NEs were higher in G-CSF group, while no differences in severity were found. Further stratified analysis showed that the incidence and severity of CRS were not associated with G-CSF administration in patients with low bone marrow (BM) tumor burden. None of the patients with low BM tumor burden developed NEs. However, there was a significant increase in the incidence of CRS after G-CSF administration in patients with high BM tumor burden. The duration of CRS in patients who used G-CSF was longer. There were no significant differences in response rates at 1 and 3 months after CAR T-cell infusion, as well as overall survival (OS) between the two groups. In conclusion, our results showed that G-CSF administration was not associated with the incidence or severity of CRS in patients with low BM tumor burden, but the incidence of CRS was higher after G-CSF administration in patients with high BM tumor burden. The duration of CRS was prolonged in G-CSF group. G-CSF administration was not associated with the efficacy of CAR T-cell therapy.


Assuntos
Síndromes Neurotóxicas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Humanos , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Imunoterapia Adotiva/efeitos adversos , Estudos Retrospectivos , Síndrome da Liberação de Citocina , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Terapia Baseada em Transplante de Células e Tecidos
3.
Cancer Immunol Immunother ; 73(6): 101, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630265

RESUMO

BACKGROUND: Adoptive transfer of in vitro expanded tumor-infiltrating lymphocytes (TILs) has been effective in regressing several types of malignant tumors. This study assessed the yield and factors influencing the successful expansion of tumor-infiltrating lymphocytes (TILs) from head and neck squamous cell carcinoma (HNSCC), along with their immune phenotypes. METHODS: TILs were expanded from 47 surgically resected HNSCC specimens and their metastasized lymph nodes. The cancer tissues were cut into small pieces (1-2 mm) and underwent initial expansion for 2 weeks. Tumor location, smoking history, stromal TIL percentage, human papillomavirus infection, and programmed death-ligand 1 score were examined for their impact on successful expansion of TILs. Expanded TILs were evaluated by flow cytometry using fluorescence-activated cell sorting. A second round of TIL expansion following the rapid expansion protocol was performed on a subset of samples with successful TIL expansion. RESULTS: TILs were successfully expanded from 36.2% samples. Failure was due to contamination (27.6%) or insufficient expansion (36.2%). Only the stromal TIL percentage was significantly associated with successful TIL expansion (p = 0.032). The stromal TIL percentage also displayed a correlation with the expanded TILs per fragment (r = 0.341, p = 0.048). On flow cytometry analysis using 13 samples with successful TIL expansion, CD4 + T cell dominancy was seen in 69.2% of cases. Effector memory T cells were the major phenotype of expanded CD4 + and CD8 + T cells in all cases. CONCLUSION: We could expand TILs from approximately one-third of HNSCC samples. TIL expansion could be applicable in HNSCC samples with diverse clinicopathological characteristics.


Assuntos
Neoplasias de Cabeça e Pescoço , Imunoterapia Adotiva , Humanos , Linfócitos do Interstício Tumoral , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Transferência Adotiva , Neoplasias de Cabeça e Pescoço/terapia
4.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612592

RESUMO

Breast cancer (BCA) remains the leading cause of cancer-related mortality among women worldwide. This review delves into the therapeutic challenges of BCA, emphasizing the roles of interleukin-13 receptor α2 (IL-13Rα2) and erythropoietin-producing hepatocellular receptor A2 (EphA2) in tumor progression and resistance. Highlighting their overexpression in BCA, particularly in aggressive subtypes, such as Her-2-enriched and triple-negative breast cancer (TNBC), we discuss the potential of these receptors as targets for chimeric antigen receptor T-cell (CAR-T) therapies. We examine the structural and functional roles of IL-13Rα2 and EphA2, their pathological significance in BCA, and the promising therapeutic avenues their targeting presents. With an in-depth analysis of current immunotherapeutic strategies, including the limitations of existing treatments and the potential of dual antigen-targeting CAR T-cell therapies, this review aims to summarize potential future novel, more effective therapeutic interventions for BCA. Through a thorough examination of preclinical and clinical studies, it underlines the urgent need for targeted therapies in combating the high mortality rates associated with Her-2-enriched and TNBC subtypes and discusses the potential role of IL-13Rα2 and EphA2 as promising candidates for the development of CAR T-cell therapies.


Assuntos
Subunidade alfa2 de Receptor de Interleucina-13 , Receptores de Antígenos Quiméricos , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Subunidade alfa2 de Receptor de Interleucina-13/genética , Neoplasias de Mama Triplo Negativas/terapia , Receptores da Eritropoetina , Imunoterapia Adotiva , Terapia Baseada em Transplante de Células e Tecidos
5.
Zhonghua Xue Ye Xue Za Zhi ; 45(2): 105-108, 2024 Feb 14.
Artigo em Chinês | MEDLINE | ID: mdl-38604784

RESUMO

Hematopoietic stem cell transplantation provides an effective cure for various hematological diseases, especially malignant hematological diseases, its treatment system has been continuously optimized, the source of donors has been expanding, the indications have been expanding, and the therapeutic effect has also made breakthroughs to a certain extent. At present, the status of hematopoietic stem cell transplantation technology in most hematological diseases is still unshakable, but the recurrence of the primary disease and complications related to hematopoietic stem cell transplantation are still two major clinical challenges that affect the long-term survival and quality of life of patients. Cell therapy represented by chimeric antigen receptor T (CAR-T) has made breakthrough progress in the treatment of refractory/recurrent B-cell malignancies. Compared with traditional drugs, cell therapy has unique in vivo metabolic characteristics, relying on immune specific recognition and the repair ability of stem cells. It is currently emerging in the treatment of blood tumors and the management of transplant complications. Multiple clinical studies have preliminarily demonstrated a new diagnostic and therapeutic model combining cell therapy with hematopoietic stem cell transplantation.


Assuntos
Doenças Hematológicas , Transplante de Células-Tronco Hematopoéticas , Receptores de Antígenos Quiméricos , Humanos , Qualidade de Vida , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Terapia Baseada em Transplante de Células e Tecidos , Imunoterapia Adotiva
6.
Front Immunol ; 15: 1378944, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558801

RESUMO

Chimeric antigen receptor (CAR) T cell therapy holds enormous potential for the treatment of hematologic malignancies. Despite its benefits, it is still used as a second line of therapy, mainly because of its severe side effects and patient unresponsiveness. Numerous researchers worldwide have attempted to identify effective predictive biomarkers for early prediction of treatment outcomes and adverse effects in CAR T cell therapy, albeit so far only with limited success. This review provides a comprehensive overview of the current state of predictive biomarkers. Although existing predictive metrics correlate to some extent with treatment outcomes, they fail to encapsulate the complexity of the immune system dynamics. The aim of this review is to identify six major groups of predictive biomarkers and propose their use in developing improved and efficient prediction models. These groups include changes in mitochondrial dynamics, endothelial activation, central nervous system impairment, immune system markers, extracellular vesicles, and the inhibitory tumor microenvironment. A comprehensive understanding of the multiple factors that influence therapeutic efficacy has the potential to significantly improve the course of CAR T cell therapy and patient care, thereby making this advanced immunotherapy more appealing and the course of therapy more convenient and favorable for patients.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia , Linfócitos T , Biomarcadores/metabolismo
7.
Cell Stem Cell ; 31(4): 437-438, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579681

RESUMO

Anti-CD19 CAR T cells were among the last decade's scientific breakthroughs, achieving remarkable remissions in patients with B cell leukemias and lymphomas. Now, the engineered cell therapies are traversing disease indications into autoimmunity and resolving disease symptoms in patients with systemic lupus erythematosus (SLE), idiopathic inflammatory myositis, and systemic sclerosis.1.


Assuntos
Imunoterapia Adotiva , Lúpus Eritematoso Sistêmico , Neoplasias , Humanos , Autoimunidade/imunologia , Lúpus Eritematoso Sistêmico/terapia , Linfócitos T , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/uso terapêutico
8.
Rev Med Suisse ; 20(868): 688-693, 2024 Apr 03.
Artigo em Francês | MEDLINE | ID: mdl-38568061

RESUMO

Cellular therapy using genetically modified T lymphocytes expressing synthetic receptors, known as CAR (Chimeric Antigen Receptor), has revolutionized the treatment of certain hematologic malignancies. This success has led to exploring the same approach in the treatment of severe autoimmune diseases refractory to conventional therapies. Initial results in systemic lupus erythematosus have shown complete remissions that appear to persist over time. Consequently, there is a growing number of ongoing clinical trials. In this review, we discuss the rationale behind the use of CAR-T therapies, the targeted autoimmune diseases, and the associated risks.


La thérapie cellulaire à base de lymphocytes T génétiquement modifiés exprimant des récepteurs synthétiques ou CAR (récepteur antigénique chimérique) a révolutionné le traitement de certaines maladies hémato-oncologiques. Ce succès a conduit à l'exploration de la même approche dans le traitement de maladies auto-immunes sévères et réfractaires aux thérapies conventionnelles. Les premiers résultats obtenus dans le lupus érythémateux systémique ont montré des rémissions complètes semblant persister dans le temps. Nous assistons donc actuellement à une prolifération importante d'essais cliniques. Dans cet article, nous abordons le rationnel derrière l'utilisation des thérapies CAR-T, les maladies auto-immunes ciblées, mais aussi les risques associés.


Assuntos
Doenças Autoimunes , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva , Doenças Autoimunes/terapia , Terapia Baseada em Transplante de Células e Tecidos , 60410
9.
Cell Death Dis ; 15(4): 238, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561367

RESUMO

Macrophages, as pivotal cells within the tumour microenvironment, significantly influence the impact of and reactions to treatments for solid tumours. The rapid evolution of bioengineering technology has revealed the vast potential of engineered macrophages in immunotherapy, disease diagnosis, and tissue engineering. Given this landscape, the goal of harnessing and innovating macrophages as a novel strategy for solid tumour immunotherapy cannot be overstated. The diverse strategies for engineered macrophages in the realm of cancer immunotherapy, encompassing macrophage drug delivery systems, chimeric antigen receptor macrophage therapy, and synergistic treatment approaches involving bacterial outer membrane vesicles and macrophages, are meticulously examined in this review. These methodologies are designed to enhance the therapeutic efficacy of macrophages against solid tumours, particularly those that are drug-resistant and metastatic. Collectively, these immunotherapies are poised to supplement and refine current solid tumour treatment paradigms, thus heralding a new frontier in the fight against malignant tumours.


Assuntos
Imunoterapia , Neoplasias , Humanos , Imunoterapia/métodos , Neoplasias/patologia , Macrófagos/patologia , Imunoterapia Adotiva , Sistemas de Liberação de Medicamentos , Microambiente Tumoral
10.
J Exp Clin Cancer Res ; 43(1): 95, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561797

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is a highly aggressive brain tumor with a poor prognosis. Current treatment options are limited and often ineffective. CAR T cell therapy has shown success in treating hematologic malignancies, and there is growing interest in its potential application in solid tumors, including GBM. However, current CAR T therapy lacks clinical efficacy against GBM due to tumor-related resistance mechanisms and CAR T cell deficiencies. Therefore, there is a need to improve CAR T cell therapy efficacy in GBM. METHODS: We conducted large-scale CRISPR interference (CRISPRi) screens in GBM cell line U87 MG cells co-cultured with B7-H3 targeting CAR T cells to identify genetic modifiers that can enhance CAR T cell-mediated tumor killing. Flow cytometry-based tumor killing assay and CAR T cell activation assay were performed to validate screening hits. Bioinformatic analyses on bulk and single-cell RNA sequencing data and the TCGA database were employed to elucidate the mechanism underlying enhanced CAR T efficacy upon knocking down the selected screening hits in U87 MG cells. RESULTS: We established B7-H3 as a targetable antigen for CAR T therapy in GBM. Through large-scale CRISPRi screening, we discovered genetic modifiers in GBM cells, including ARPC4, PI4KA, ATP6V1A, UBA1, and NDUFV1, that regulated the efficacy of CAR T cell-mediated tumor killing. Furthermore, we discovered that TNFSF15 was upregulated in both ARPC4 and NDUFV1 knockdown GBM cells and revealed an immunostimulatory role of TNFSF15 in modulating tumor-CAR T interaction to enhance CAR T cell efficacy. CONCLUSIONS: Our study highlights the power of CRISPR-based genetic screening in investigating tumor-CAR T interaction and identifies potential druggable targets in tumor cells that confer resistance to CAR T cell killing. Furthermore, we devised targeted strategies that synergize with CAR T therapy against GBM. These findings shed light on the development of novel combinatorial strategies for effective immunotherapy of GBM and other solid tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Receptores de Antígenos Quiméricos , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Imunoterapia , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral
12.
Front Immunol ; 15: 1360237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576617

RESUMO

Comprising only 1-10% of the circulating T cell population, γδT cells play a pivotal role in cancer immunotherapy due to their unique amalgamation of innate and adaptive immune features. These cells can secrete cytokines, including interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α), and can directly eliminate tumor cells through mechanisms like Fas/FasL and antibody-dependent cell-mediated cytotoxicity (ADCC). Unlike conventional αßT cells, γδT cells can target a wide variety of cancer cells independently of major histocompatibility complex (MHC) presentation and function as antigen-presenting cells (APCs). Their ability of recognizing antigens in a non-MHC restricted manner makes them an ideal candidate for allogeneic immunotherapy. Additionally, γδT cells exhibit specific tissue tropism, and rapid responsiveness upon reaching cellular targets, indicating a high level of cellular precision and adaptability. Despite these capabilities, the therapeutic potential of γδT cells has been hindered by some limitations, including their restricted abundance, unsatisfactory expansion, limited persistence, and complex biology and plasticity. To address these issues, gene-engineering strategies like the use of chimeric antigen receptor (CAR) T therapy, T cell receptor (TCR) gene transfer, and the combination with γδT cell engagers are being explored. This review will outline the progress in various engineering strategies, discuss their implications and challenges that lie ahead, and the future directions for engineered γδT cells in both monotherapy and combination immunotherapy.


Assuntos
Neoplasias , Receptores de Antígenos de Linfócitos T gama-delta , Receptores de Antígenos de Linfócitos T gama-delta/genética , Linfócitos T , Imunoterapia , Imunoterapia Adotiva , Engenharia Celular , Neoplasias/terapia
14.
J Transl Med ; 22(1): 368, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637886

RESUMO

In this study, we investigated CD70 as a promising target for renal cell carcinoma (RCC) therapy and developed a potent chimeric antigen receptor T (CAR-T) cells for potential clinical testing. CD70, found to be highly expressed in RCC tumors, was associated with decreased survival. We generated CAR-T cells expressing VHH sequence of various novel nanobodies from immunized alpaca and a single-chain variable fragment (scFv) derived from human antibody (41D12). In our in vitro experiments, anti-CD70 CAR-T cells effectively eliminated CD70-positive tumor cells while sparing CD70-negative cells. The nanobody-based CAR-T cells demonstrated significantly higher production of cytokines such as IL-2, IFN-γ and TNF-ɑ during co-culture, indicating their potential for enhanced functionality. In xenograft mouse model, these CAR-T cells exhibited remarkable anti-tumor activity, leading to the eradication of RCC tumor cells. Importantly, human T cell expansion after infusion was significantly higher in the VHH groups compared to the scFv CAR-T group. Upon re-challenging mice with RCC tumor cells, the VHH CAR-T treated group remained tumor-free, suggesting a robust and long-lasting anti-tumor response. These findings provide strong support for the potential of nanobody-based CD70 CAR-T cells as a promising therapeutic option for RCC. This warrants further development and consideration for future clinical trials and applications.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Carcinoma de Células Renais/terapia , Linfócitos T , Linhagem Celular Tumoral , Neoplasias Renais/terapia , Imunoterapia Adotiva , Ensaios Antitumorais Modelo de Xenoenxerto , Ligante CD27
15.
J Immunol Methods ; 528: 113667, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574803

RESUMO

Chimeric antigen receptor (CAR) redirected T cells are successfully employed in the combat against several hematological malignancies, however, are often compromised by low transduction rates making refinement of the CAR T cell products necessary. Here, we report a broadly applicable enrichment protocol relying on marking CAR T cells with an anti-glycine4-serine (G4S) linker antibody followed by magnetic activated cell sorting (MACS). The protocol is broadly applicable since the G4S peptide is an integral part of the vast majority of CARs as it links the VH and VL recognition domains. We demonstrate the feasibility by using the canonical second generation CARs specific for CEA and Her2, respectively, obtaining highly purified CAR T cell products in a one-step procedure without impairing cell viability. The protocol is also applicable to a dual specific CAR (tandem CAR). Except for CD39, T cell activation/exhaustion markers were not upregulated after separation. Purified CAR T cells retained their functionality with respect to antigen-specific cytokine secretion, cytotoxicity, and the capacity to proliferate and eliminate cognate tumor cells upon repetitive stimulation. Collectively, the one-step protocol for purifying CAR T cells extends the toolbox for preclinical research and specifically for clinical CAR T cell manufacturing.


Assuntos
Receptores de Antígenos Quiméricos , Linfócitos T , Citotoxicidade Imunológica , Separação Celular , Fenômenos Magnéticos , Imunoterapia Adotiva/métodos
18.
J Immunother Cancer ; 12(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38631708

RESUMO

BACKGROUND: Natural killer (NK) cells are cytotoxic cells capable of recognizing heterogeneous cancer targets without prior sensitization, making them promising prospects for use in cellular immunotherapy. Companion dogs develop spontaneous cancers in the context of an intact immune system, representing a valid cancer immunotherapy model. Previously, CD5 depletion of peripheral blood mononuclear cells (PBMCs) was used in dogs to isolate a CD5dim-expressing NK subset prior to co-culture with an irradiated feeder line, but this can limit the yield of the final NK product. This study aimed to assess NK activation, expansion, and preliminary clinical activity in first-in-dog clinical trials using a novel system with unmanipulated PBMCs to generate our NK cell product. METHODS: Starting populations of CD5-depleted cells and PBMCs from healthy beagle donors were co-cultured for 14 days, phenotype, cytotoxicity, and cytokine secretion were measured, and samples were sequenced using the 3'-Tag-RNA-Seq protocol. Co-cultured human PBMCs and NK-isolated cells were also sequenced for comparative analysis. In addition, two first-in-dog clinical trials were performed in dogs with melanoma and osteosarcoma using autologous and allogeneic NK cells, respectively, to establish safety and proof-of-concept of this manufacturing approach. RESULTS: Calculated cell counts, viability, killing, and cytokine secretion were equivalent or higher in expanded NK cells from canine PBMCs versus CD5-depleted cells, and immune phenotyping confirmed a CD3-NKp46+ product from PBMC-expanded cells at day 14. Transcriptomic analysis of expanded cell populations confirmed upregulation of NK activation genes and related pathways, and human NK cells using well-characterized NK markers closely mirrored canine gene expression patterns. Autologous and allogeneic PBMC-derived NK cells were successfully expanded for use in first-in-dog clinical trials, resulting in no serious adverse events and preliminary efficacy data. RNA sequencing of PBMCs from dogs receiving allogeneic NK transfer showed patient-unique gene signatures with NK gene expression trends in response to treatment. CONCLUSIONS: Overall, the use of unmanipulated PBMCs appears safe and potentially effective for canine NK immunotherapy with equivalent to superior results to CD5 depletion in NK expansion, activation, and cytotoxicity. Our preclinical and clinical data support further evaluation of this technique as a novel platform for optimizing NK immunotherapy in dogs.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Cães , Animais , Humanos , Imunoterapia Adotiva , Leucócitos Mononucleares , Citotoxicidade Imunológica , Células Matadoras Naturais , Osteossarcoma/veterinária , Neoplasias Ósseas/metabolismo , Citocinas/metabolismo
19.
Cancer Immunol Res ; 12(4): 385-386, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38562081

RESUMO

All chimeric antigen receptor (CAR) T-cell products currently approved by the FDA are autologous, which poses several challenges for widespread use. In this issue, Degagné and colleagues present their preclinical research on creating off-the-shelf CAR T cells for multiple myeloma. They utilized the CRISPR/Cas12a genome editing platform and gene knock-in techniques to eliminate alloreactivity and decrease susceptibility to natural killer (NK)-cell elimination. This work has led to an ongoing phase I trial of off-the-shelf CAR T cells for multiple myeloma treatment. See related article by Degagné et al., p. 462 (2).


Assuntos
Transplante de Células-Tronco Hematopoéticas , Mieloma Múltiplo , Humanos , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Imunoterapia Adotiva/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...